|
公司基本資料信息
|
距離再縮短時(shí),吸引力又逐漸減小,
到R=R0時(shí),相互作用力等于零 (F=0),此時(shí)達(dá)到平衡,
R0 為平衡距離。當(dāng)距離小于平衡距離R0 時(shí),出現(xiàn)排斥力
(P>0),并隨距離的繼續(xù)縮短而迅速增大。作用力F是由
引力和斥力構(gòu)成的合力。吸引力是異性電荷間的庫侖引
力;排斥力是同性電荷之間的斥力和。兩個(gè)原子的相互作
用勢(shì)能W (R)的曲線如圖11(b)所示,可見在R=R0
時(shí),對(duì)應(yīng)于能量的極小值,狀態(tài)穩(wěn)定。這說明,原子之間
傾向于保持一定的間距,這就是在一定條件下,金屬中的
原子具有一定排列的原因。
表面活性元素在金屬表面富集,當(dāng)接近熔點(diǎn)時(shí)尤為顯著。因?yàn)樵谌埸c(diǎn)附近的液體中有大
的原子集團(tuán),它們對(duì)體積大的原子的排擠也就越明顯。但是溫度升高時(shí),原子排列的不規(guī)
性增加,溶質(zhì)和溶劑容易均勻混合,而削弱了表面富集現(xiàn)象。因而,隨著溫度的升高,表
張力反而有所增大,到一定溫度后,表面張力又降低。
原子體積很小的C、O、S等元素,在金屬中容易間隙到晶格中,也使晶格歪曲,勢(shì)能
加,也被排擠到金屬表面,成為表面活性元素。由于這些元素的自由電子很少,表面張力
,也會(huì)使金屬的表面張力降低。圖112所示為鎂合金中加入第二組元后表面張力的變化
程傳熱特征的各物理量之間的方程式,即鑄件和鑄型的溫度場(chǎng)數(shù)學(xué)模型并加以求解。目前數(shù)
值模擬方法日臻完善,應(yīng)用范圍也在進(jìn)一步拓寬。在實(shí)現(xiàn)溫度場(chǎng)模擬的同時(shí),還能對(duì)工藝參
數(shù)進(jìn)行優(yōu)化、宏觀及微觀組織的模擬等。但從三者的聯(lián)系上看,數(shù)學(xué)解析法得到的基本公式
是進(jìn)行數(shù)值模擬的基礎(chǔ),而實(shí)驗(yàn)測(cè)定溫度場(chǎng)對(duì)具體的實(shí)際凝固問題有不可替代的作用,也是
驗(yàn)證理論計(jì)算的必要途徑。
一、數(shù)學(xué)解析法
應(yīng)該指出,鑄件在鑄型中的凝固和冷卻過程是非常復(fù)雜的。這是因?yàn)?,它首先是一個(gè)不
穩(wěn)定的傳熱過程,鑄件上各點(diǎn)的溫度隨時(shí)間而下降,而鑄型溫度則隨時(shí)間上升;其次,鑄件
的形狀各種各樣,其中大多數(shù)為三維的傳熱問題;