|
公司基本資料信息
|
表明液體的原子間距接近固體,在熔點(diǎn)附近其系統(tǒng)的混亂度只是稍大于
固體而遠(yuǎn)小于氣體的混亂度。表12為一些金屬的熔化潛熱和汽化潛熱。如果說(shuō)汽化潛熱
(固→氣)是使原子間的結(jié)合鍵全部破壞所需的能量,則熔化潛熱只有汽化潛熱的3%~7%,
即固→液時(shí),原子的結(jié)合鍵只破壞了百分之幾。因此,可以認(rèn)為液態(tài)和固態(tài)的結(jié)構(gòu)是相似
的,金屬的熔化并不是原子間結(jié)合鍵的全部破壞,液體金屬內(nèi)原子仍然具有一定的規(guī)律性,
特別是在金屬過(guò)熱度不太高 (一般高于熔點(diǎn)100~300℃)的條件下更是如此。需要指出的
是,在接近汽化點(diǎn)時(shí),液體與氣體的結(jié)構(gòu)往往難以分辨,說(shuō)明此時(shí)液體的結(jié)構(gòu)更接近于
氣體。
對(duì)于鑄件溫度場(chǎng)的影響,可從金屬性質(zhì)、鑄型性質(zhì)、澆注條件及鑄件結(jié)構(gòu)四個(gè)方面來(lái)
析。
(1)金屬性質(zhì)的影響 金屬的熱擴(kuò)散率大,鑄件內(nèi)部的溫度均勻化的能力就大,溫度梯
就小,斷面上溫度分布曲線就比較平坦;反之,溫度分布曲線就比較峻陡。金屬的結(jié)晶潛
大,向鑄型傳熱的時(shí)間則要長(zhǎng),鑄型內(nèi)表面被加熱的溫度也高,鑄件斷面的溫度梯度減
,鑄件的冷卻速度下降,溫度場(chǎng)也較平坦。金屬的凝固溫度越高,在凝固過(guò)程中鑄件表面
鑄型內(nèi)表面的溫度越高,鑄型內(nèi)外表面的溫差就越大,且鑄型的熱導(dǎo)率在高溫段隨溫度的
高而升高,致使鑄件斷面的溫度場(chǎng)有較大的梯度。
而是在鑄件最后凝固的部位留下集中的縮孔,如圖136所示。由于集中縮孔容易消除 (如設(shè)置冒口),一般認(rèn)為這類合金
的補(bǔ)縮性良好。在板狀和棒狀鑄件上會(huì)出現(xiàn)中心線縮孔。這類合金鑄件在凝固過(guò)程中,當(dāng)收
縮受阻而產(chǎn)生晶間裂紋時(shí),也容易得到金屬液的充填,使裂紋愈合,所以鑄件的熱裂傾向
性小。
寬結(jié)晶溫度范固的合金 (如高碳鋼、球墨鑄鐵、鋁銅合金、鋁鎂合金、鎂合金等)鑄件
圖137 體積凝固方式的縮松的凝固區(qū)域?qū)?,液態(tài)金屬的過(guò)冷很小,容易發(fā)展成為樹枝發(fā)達(dá)
的粗大等軸晶組織。當(dāng)粗大的等軸晶相互連接以后 (固相約占
70%),便將尚未凝固的液態(tài)金屬分割為一個(gè)個(gè)互不溝通的溶池,最后在鑄件中形成分散性的縮孔即縮松。