|
公司基本資料信息
|
實際金屬比上述現(xiàn)象復雜得多,因為工業(yè)應用的金屬主要是合金,而且是多元合金;原9
材料中存在多種多樣的雜質,有些雜質的化學分析值雖然不高,甚至低于10-4數量級,但
其原子數仍是驚人的;在熔化過程中,金屬與爐氣、熔劑、爐襯的相互作用還會吸收氣體帶
進雜質,甚至帶入許多固、液體質點。因此,實際金屬的液態(tài)結構是非常復雜的。它也存在
著游動原子集團、空穴以及能量起伏,在原子集團和空穴中溶有各種各樣的合金元素及雜質
元素,由于化學鍵力和原子間結合力的不同,還存在著濃度起伏以至成分和結構不同的游動
原子集團。
可以看出,鑄件的溫度場隨時間而變化,為不穩(wěn)定溫度場。鑄件斷面上的溫度場
也稱溫度分布曲線。如果鑄件均勻壁兩側的冷卻條件相同,則任何時刻的溫度分布曲線
對鑄件壁厚的軸線是對稱的。溫度場的變化速率,即為表征鑄件冷卻強度的溫度梯度。
溫度場能更直觀地顯示出凝固過程的情況。
圖131所示是鑄件的凝固動態(tài)曲線,也是根據直接測量的溫度時間曲線繪制的:首先
圖131(a)上給出合金的液相線和固相線溫度,把二直線與溫度時間曲線相交的各點分
標注在圖131(b)(x/R,τ)坐標系上,再將各點連接起來,即得凝固動態(tài)曲線??v坐標
子x是鑄件表面向中心方向的距離,分母R是鑄件壁厚之半或圓柱體和球體的半徑。因
固是從鑄件壁兩側同時向中心進行,所以x/R=1表示已凝固至鑄件中心。
顯然,根據形成表面張力的原因可以推知,不僅在上述的液氣界面,
而且在所有兩相界面,如固氣、液固、液液上都存在表面張力。故廣義地說,表面
張力應稱為界面張力,可分別用σ固氣 、σ液固 、σ液液 表示之,不特別指明時,通常皆指
與氣相的界面張力。
衡量界面張力的標志是潤濕角θ,它與界面張力的關系由楊氏方程決定。
式(112)稱為楊氏方程式,可以看出,接觸
θ的值與各界面張力的相對值有關,如圖110。
①σSG>σLS時,cosθ為正值,即θ<90°。通θ為銳角的情況,稱為液體能潤濕固體。θ=
,液體在固體表面鋪展成薄膜,稱為完全。