|
公司基本資料信息
|
減小鑄型中氣體反壓力的途徑有兩條。一條是適當?shù)托蜕爸械暮亢桶l(fā)氣物質的含量,亦即減小
砂型的發(fā)氣性;另一條途徑是提高砂型的透氣性,在砂型上扎通氣孔,或在離澆注端最遠或高部位設通
氣冒口,增加砂型的排氣能力。
3澆注條件方面的因素
(1)澆注溫度 澆注溫度對液態(tài)金屬的充型能力
有決定性的影響。澆注溫度越高,充型能力越好。在
一定溫度范圍內,充型能力隨澆注溫度的提高而直線
上升。超過某界限后,由于金屬吸氣多,氧化嚴重,充型能力的提高幅度越來越小。對于薄
壁鑄件或流動性差的合金,利用提高澆注溫度改善充型能力的措施,在生產中經(jīng)常采用,也
比較方便。但是,隨著澆注溫度的提高,鑄件一次結晶組織粗大,容易產生縮孔、縮松、粘
砂、裂紋等缺陷,因此必須綜合考慮,謹慎使用。
如果因鑄件斷面溫度場較平坦 [圖134(a)],或合金的結晶溫度范圍很寬 [圖134
(b)],鑄件凝固的某一段時間內,其凝固區(qū)域在某時刻貫穿整個鑄件斷面時,則在凝固區(qū)
域里既有已結晶的晶體也有未凝固的液體,這種情況為 “體積凝固方式”,或稱 “糊狀凝固
方式”。
如果合金的結晶溫度范圍較窄 [圖135(a)],或者鑄件斷面的溫度梯度較大 [圖135
圖135 “中間凝固方式”示意圖
(b)],鑄件斷面上的凝固區(qū)域寬度介于前
二者之間時,則屬于 “中間凝固方式”。
凝固區(qū)域的寬度可以根據(jù)凝固動態(tài)曲
線上的 “液相邊界”與 “固相邊界”之間
的縱向距離直接判斷。因此,這個距離的
大小是劃分凝固方式的一個準則。如果兩
條曲線重合在一起———恒溫下結晶的金屬,
或者其間距很小,則趨向于逐層凝固方式。
① 鋼球模型 假設液態(tài)金屬是均質的、密度集中的、
列紊亂的原子堆積體。其中既無晶體區(qū)域,又無大到足
容納另一原子的空穴。在構建液體結構幾何模型的實驗
,用無規(guī)則堆積的鋼球灌以油漆,固化后統(tǒng)計單個球接
點的數(shù)目。根據(jù)統(tǒng)計結果可確定該結構的平均配位數(shù),
液態(tài)結構的平均配位數(shù)。發(fā)現(xiàn),在紊亂密集的球堆中存
高度致密區(qū),其統(tǒng)計結構獲得的偶分布函數(shù)g(r)與液體
的衍射實驗結構很好吻合。鋼球模型形象地描述了液體
程有序遠程無序的特征,為奠定液體結構的統(tǒng)計幾何基
做出了重要貢獻。